Probabilistic Predictions with Federated Learning
نویسندگان
چکیده
منابع مشابه
Federated Multi-Task Learning
Federated learning poses new statistical and systems challenges in training machinelearning models over distributed networks of devices. In this work, we show thatmulti-task learning is naturally suited to handle the statistical challenges of thissetting, and propose a novel systems-aware optimization method, MOCHA, that isrobust to practical systems issues. Our method and theor...
متن کاملSnippet-Based Relevance Predictions for Federated Web Search
How well can the relevance of a page be predicted, purely based on snippets? This would be highly useful in a Federated Web Search setting where caching large amounts of result snippets is more feasible than caching entire pages. The experiments reported in this paper make use of result snippets and pages from a diverse set of actual Web search engines. A linear classifier is trained to predict...
متن کاملEntity Resolution and Federated Learning get a Federated Resolution
Consider two data providers, each maintaining records of different feature sets about common entities. They aim to learn a linear model over the whole set of features. This problem of federated learning over vertically partitioned data includes a crucial upstream issue: entity resolution, i.e. finding the correspondence between the rows of the datasets. It is well known that entity resolution, ...
متن کاملFederated Meta-Learning for Recommendation
Recommender systems have been widely studied from the machine learning perspective, where it is crucial to share information among users while preserving user privacy. In this work, we present a federated meta-learning framework for recommendation in which user information is shared at the level of algorithm, instead of model or data adopted in previous approaches. In this framework, user-speci...
متن کاملProbabilistic Tracking of Motion Boundaries with Spatiotemporal Predictions
We describe a probabilistic framework for detecting and tracking motion boundaries. It builds on previous work [4] that used a particle filter to compute a posterior distribution over multiple, local motion models, one of which was specific for motion boundaries. We extend that framework in two ways: 1) with an enhanced likelihood that combines motion and edge support, 2) with a spatiotemporal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Entropy
سال: 2020
ISSN: 1099-4300
DOI: 10.3390/e23010041